

Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006 in seiner derzeit gültigen Fassung

Seite 1 von 18

SDB-Nr.: 153497

V011.0

überarbeitet am: 06.04.2022

Druckdatum: 06.05.2022

Ersetzt Version vom: 15.12.2021

LOCTITE 574

ABSCHNITT 1: Bezeichnung des Stoffs bzw. des Gemischs und des Unternehmens

1.1. Produktidentifikator

LOCTITE 574

1.2. Relevante identifizierte Verwendungen des Stoffs oder Gemischs und Verwendungen, von denen abgeraten wird

Vorgesehene Verwendung:

Anaerobic Sealant

1.3. Einzelheiten zum Lieferanten, der das Sicherheitsdatenblatt bereitstellt

Henkel AG & Co. KGaA

Henkelstr. 67

40589 Düsseldorf

Deutschland

Tel.: +49 211 797 0 Fax-Nr.: +49 211 798 2009

ua-productsafety.de@henkel.com

Aktualisierungen der Sicherheitsdatenblätter können auf unserer Internetseite abgerufen werden https://mysds.henkel.com/index.html#/appSelection oder www.henkel-adhesives.com.

1.4. Notrufnummer

Für Notfälle steht Ihnen die Henkel-Werkfeuerwehr unter der Telefon-Nr. +49-(0)211-797-3350 Tag und Nacht zur Verfügung.

ABSCHNITT 2: Mögliche Gefahren

2.1. Einstufung des Stoffs oder Gemischs

Einstufung (CLP):

Sensibilisierung der Haut

Kategorie 1

H317 Kann allergische Hautreaktionen verursachen.

2.2. Kennzeichnungselemente

Kennzeich nung selemente (CLP):

Gefahrenpiktogramm:

Enthält

2'-Pheny lacetohy drazid

Maleinsäure

Signalwort: Achtung

Gefahrenhinweis: H317 Kann allergische Hautreaktionen verursachen.

Sicherheitshinweis:

Prävention

Reaktion

P280 Schutzhandschuhe tragen.

Sicherheitshinweis:

P333+P313 Bei Hautreizung oder -ausschlag: Ärztlichen Rat einholen/ärztliche Hilfe

Seite 2 von 18

hinzuziehen.

2.3. Sonstige Gefahren

Keine bei bestimmungsgemäßer Verwendung.

Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und sehr Bioakkumulativ (vPvB).

Folgende Inhaltsstoffe liegen in einer Konzentration>=0,1% vor und erfüllen die PBT/vPvB-Kriterien, bzw. wurden als endokrine Disruptoren (ED) identifiziert:

Das Gemisch enthält keine Stoffe in Konzentationen≥der Konzentrationsgrenzen zur Einstufung als PBT, vPvB oder ED.

ABSCHNITT 3: Zusammensetzung/Angaben zu Bestandteilen

3.2. Gemische

SDB-Nr.: 153497 V011.0 LOCTITE 574 Seite 3 von 18

Inhaltsstoffangabe gemäß CLP (EG) Nr 1272/2008:

Gefährliche Inhaltsstoffe	Konzentration	Einstufung	Spezifische	Zusätzliche
CAS-Nr.			Konzentrationsgrenzwerte	Informationen
EG-Nummer			(SCL), M-Faktoren und ATE-	
REACH-Reg. No.	5- < 10 %	Eye Irrit. 2, H319	Werte inhalation:ATE = 5,1	
Decan-1-ol 112-30-1	5- < 10 %	Aquatic Chronic 3, H412	mg/l;Staub/Nebel	
203-956-9		Aquatic Cironic 3, 11412	mg/1,5taub/Nebel	
01-2119480407-35				
01 2119 100 107 55				
α, α-	0,1-< 1 %	STOT RE 2, H373	Skin Irrit. 2; H315; C3 - < 10 %	
Dimethylbenzylhydroperoxid	,	Skin Corr. 1B, H314	Eye Dam. 1; H318; C3 - < 10 %	
80-15-9		Acute Tox. 2, Einatmen, H330	Eye Irrit. 2; H319; C 1 - < 3 %	
201-254-7		Aquatic Chronic 2, H411	Skin Corr. 1B; H314; C>= 10 %	
01-2119475796-19		Acute Tox. 4, Oral, H302	STOT SE 3; H335; C >= 1 %	
		Acute Tox. 4, Dermal, H312	====	
		Org. Perox. E, H242	dermal:ATE = 1.100 mg/kg	
		STOT SE 3, H335		
2'-Phenylacetohydrazid	0,1-< 1 %	Acute Tox. 3, Oral, H301		
114-83-0		Skin Irrit. 2, H315		
204-055-3		Skin Sens. 1, H317		
		Eye Irrit. 2, H319		
		STOT SE 3, Einatmen, H335		
		Carc. 2, H351		
M 1 : "	0.1 . 1.0/	A sust a Trans. 4. Oural 11202	Chin Conn. 1. H217. C > 0.1 0/	
Maleinsäure 110-16-7	0,1-< 1 %	Acute Tox. 4, Oral, H302 Eye Irrit. 2, H319	Skin Sens. 1; H317; C >= 0,1 %	
203-742-5		STOT SE 3, H335		
01-2119488705-25		Skin Irrit. 2, H315		
01-2119488703-23		Skin Sens. 1, H317		
		Acute Tox. 4, Dermal, H312		
		Acute 10x. 4, Definal, 11312		
1,4-Naphthochinon	0,01-< 0,015 %	Acute Tox. 3, Oral, H301	M acute = 10	
130-15-4	(100 ppm- < 150	Skin Corr. 1C, H314	M chronic = 1	
204-977-6	ppm)	Skin Sens. 1, H317		
		Eye Dam. 1, H318		
		Acute Tox. 1, Einatmen, H330		
		STOT SE 3, H335		
		Aquatic Acute 1, H400		
		Aquatic Chronic 1, H410		

Vollständiger Wortlaut der H-Sätze und anderer Abkürzungen siehe Kapitel 16 'Sonstige Angaben'. Für Stoffe ohne Einstufung können länderspezifische Arbeitsplatzgrenzwerte vorhanden sein.

ABSCHNITT 4: Erste-Hilfe-Maßnahmen

4.1. Beschreibung der Erste-Hilfe-Maßnahmen

Einatmen:

Patienten an die frische Luft bringen. Bei länger anhaltenden Beschwerden Arzt konsultieren.

Hautkontakt:

Spülung mit fließendem Wasser und Seife.

Bei anhaltender Reizung ärztlichen Rat einholen.

Augenkontakt:

Sofortige Spülung unter fließendem Wasser (10 Minuten lang), Facharzt aufsuchen.

Verschlucken:

Spülung der Mundhöhle, trinken von 1-2 Gläsern Wasser, kein Erbrechen auslösen, Arzt konsultieren.

4.2. Wichtigste akute und verzögert auftretende Symptome und Wirkungen

Haut: Hautausschlag, Nesselsucht.

Wiederholter oder länger anhaltender Kontakt mit den Augen kann zu Augenreizung führen.

4.3. Hinweise auf ärztliche Soforthilfe oder Spezialbehandlung

Siehe Kapitel: Beschreibung der Erste-Hilfe-Maßnahmen

ABSCHNITT 5: Maßnahmen zur Brandbekämpfung

5.1. Löschmittel

Geeignete Löschmittel:

Wasser, Kohlendioxid, Schaum, Pulver

Aus Sicherheitsgründen ungeeignete Löschmittel:

Wasservollstrahl

5.2. Besondere vom Stoff oder Gemisch ausgehende Gefahren

Im Brandfall können Kohlenmonoxid (CO), Kohlendioxid (CO2) und Stickoxide (NOx) freigesetzt werden.

5.3. Hinweise für die Brandbekämpfung

Umgebungsluftunabhängiges Atemschutzgerät und Vollschutzanzug tragen.

Zusätzliche Hinweise:

Im Brandfall gefährdete Behälter mit Spritzwasser kühlen.

ABSCHNITT 6: Maßnahmen bei unbeabsichtigter Freisetzung

6.1. Personenbezogene Vorsichtsmaßnahmen, Schutzausrüstungen und in Notfällen anzuwendende Verfahren

Berührung mit den Augen und der Haut vermeiden.

Schutzausrüstung tragen.

Für ausreichende Be- und Entlüftung sorgen.

Zündquellen fernhalten.

6.2. Umweltschutzmaßnahmen

Nicht in die Kanalisation / Oberflächenwasser / Grundwasser gelangen lassen.

6.3. Methoden und Material für Rückhaltung und Reinigung

Kontaminiertes Material als Abfall nach Absch. 13 entsorgen.

Bei geringen verschütteten Mengen diese mit Papiertuch aufwischen und für die Entsorgung in einen Behälter geben. Bei großen verschütteten Mengen mit reaktionsträgem Absorptionsmaterial aufsaugen und für die Entsorgung in einen dicht verschlossenen Behälter geben.

6.4. Verweis auf andere Abschnitte

Hinweise in Abschnitt 8 beachten

ABSCHNITT 7: Handhabung und Lagerung

7.1. Schutzmaßnahmen zur sicheren Handhabung

Augenkontakt und Hautkontakt vermeiden.

Hinweise in Abschnitt 8 beachten

$Hy\,gienema \\ {\it B}nahmen:$

Gute industrielle Hygienebedingungen sind einzuhalten

Bei der Arbeit nicht essen, trinken oder rauchen.

Vor den Pausen und nach Arbeitsende Hände waschen.

7.2. Bedingungen zur sicheren Lagerung unter Berücksichtigung von Unverträglichkeiten

Für gute Be- und Entlüftung sorgen. entsprechend dem techn. Datenblatt

Behälter dicht geschlossen halten.

7.3. Spezifische Endanwendungen

Anaerobic Sealant

SDB-Nr.: 153497 V011.0 LOCTITE 574 Seite 5 von 18

ABSCHNITT 8: Begrenzung und Überwachung der Exposition/Persönliche Schutzausrüstungen

8.1. Zu überwachende Parameter

${\bf Arbeit splatz grenz werte}$

Gültig für

Deutschland

Inhaltstsoff[Regulierte Stoffgruppe]	ppm	mg/m ³	Werttyp	Kategorie Kurzzeitwert/ Bemerkungen	Gesetzliche Liste
Decan-1-ol 112-30-1 [Decan-1-ol]	10	66	AGW:	1 Ein Risiko der Frucht schädigung braucht bei Einhalt ung des AGW und des BGW nicht befürchtet zu werden (siehe Nummer 2.7).	TRGS 900
Decan-1-ol 112-30-1 [Decan-1-ol]			Kategorie für Kurzzeitwerte	Kategorie I: Stoffe bei denen die lokale Wirkung grenzwertbestimmend ist oder atemwegssensibilisierende Stoffe.	TRGS 900
Ethylen, Homopolymer 9002-88-4 [ALLGEMEINER ST AUBGRENZWERT, EINATEMBARE FRAKTION]			Kategorie für Kurzzeitwerte	Kategorie II: Resomtiv wirksame Stoffe.	TRGS 900
Ethylen, Homopolymer 9002-88-4 [Allgemeiner Staubgrenzwert, Einatembare Fraktion]		10	AGW:	2 Ein Risiko der Frucht schädigung braucht bei Einhalt ung des AGW und des BGW nicht befürchtet zu werden (siehe Nummer 2.7).	T RGS 900
Ethylen, Homopolymer 9002-88-4 [Allgemeiner Staubgrenzwert, Alveolengängige Fraktion]		1,25	AGW:	Ein Risiko der Frucht schädigung braucht bei Einhalt ung des AGW und des BGW nicht befürchtet zu werden (siehe Nummer 2.7).	TRGS 900
Siliciumdioxid 112945-52-5 [KIESELSÄUREN, AMORPHE, EINATEMBAREFRAKTION]		4	AGW:	Ein Risiko der Frucht schädigung braucht bei Einhaltung des AGW und des BGW nicht befürchtet zu werden (siehe Nummer 2.7).	T RGS 900
Siliciumdioxid 112945-52-5 [Allgemeiner Staubgrenzwert, Einatembare Fraktion]			Kategorie für Kurzzeitwerte	Kategorie II: Resomtiv wirksame Stoffe.	TRGS 900
Siliciumdioxid 112945-52-5 [Allgemeiner Staubgrenzwert, Einatembare Fraktion]		10	AGW:	2 Ein Risiko der Frucht schädigung braucht bei Einhaltung des AGW und des BGW nicht befürchtet zu werden (siehe Nummer 2.7).	TRGS 900
Siliciumdioxid 112945-52-5 [Allgemeiner Staubgrenzwert, Alveolengängige Fraktion]		1,25	AGW:	Ein Risiko der Frucht schädigung braucht bei Einhalt ung des AGW und des BGW nicht befürchtet zu werden (siehe Nummer 2.7).	TRGS 900

SDB-Nr.: 153497 V011.0 LOCTITE 574 Seite 6 von 18

$\label{eq:predicted} \textbf{Predicted No-Effect Concentration (PNEC):}$

Umweltkompa rtiment Süsswasser	szeit					Bemerkungen
Süsswasser						
Süsswasser		mg/l	ppm	mg/kg	andere	
		0,022 mg/l				
Sediment				0,13 mg/kg		
(Süsswasser)						
Salzwasser		0,0022				
		mg/l				
Sediment				0,013		
(Salzwasser)				mg/kg		
Boden				0,13 mg/kg		
Kläranlage		0,4 mg/l				
		, ,				
Süsswasser		0,0031				
Salzwasser						
Wasser						
		0,001 mg1				
		0.35 mg/l				
		.,				
Sediment				0.023		
(Süsswasser)						
Süsswasser		0.1 mg/l		5 5		
		, ,				
Wasser		0.4281				
		8				
				0.334		
(Süsswasser)				- /		
(44.6 mg/l		6 6		
,g-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Salzwasser		0.01 mg/l				+
		2,0191				
Sediment				0.0334		<u> </u>
` /						+
Bouch						
l	Salzwasser Sediment (Salzwasser) Boden Kläranlage Süsswasser Salzwasser Wasser (zeitweilige Freisetzung) Kläranlage Sediment (Süsswasser) Sediment (Salzwasser) Boden Süsswasser Wasser (zeitweilige Freisetzung) Sediment (Salzwasser) Boden	Salzwasser Sediment (Salzwasser) Boden Kläranlage Süsswasser Wasser (zeit weilige Freiset zung) Kläranlage Sediment (Süsswasser) Sediment (Salzwasser) Boden Süsswasser Wasser (zeit weilige Freiset zung) Kläranlage Sediment (Salzwasser) Sediment (Süsswasser) Sediment (Süsswasser) Sediment (Süsswasser) Sediment (Süsswasser) Sediment (Süsswasser) Kläranlage Salzwasser Sediment (Salzwasser)	Salzwasser 0,0022 mg/l Sediment (Salzwasser) 0,0031 mg/l Boden 0,4 mg/l Kläranlage 0,0031 mg/l Salzwasser 0,00031 mg/l Wasser (zeit weilige Freiset zung) 0,031 mg/l Kläranlage 0,35 mg/l Sediment (Süsswasser) 0,1 mg/l Sediment (zalzwasser) 0,4281 mg/l Wasser (zeit weilige Freiset zung) 0,4281 mg/l Sediment (Süsswasser) 0,46 mg/l Kläranlage 44,6 mg/l Salzwasser 0,01 mg/l Sediment (Salzwasser) 0,01 mg/l	Salzwasser 0,0022 mg/l Sediment (Salzwasser) 0,0031 mg/l Boden 0,0031 mg/l Kläranlage 0,00031 mg/l Salzwasser 0,00031 mg/l Wasser (zeit weilige Freiset zung) 0,031 mg/l Kläranlage 0,35 mg/l Sediment (Süsswasser) Sediment (Salzwasser) Boden 0,4281 mg/l Wasser (zeit weilige Freiset zung) 0,4281 mg/l Sediment (Süsswasser) 0 Kläranlage 44,6 mg/l Salzwasser 0,01 mg/l Sediment (Salzwasser) 0,01 mg/l	Salzwasser 0,0022 mg/l Sediment (Salzwasser) 0,013 mg/kg Boden 0,4 mg/l Kläranlage 0,4 mg/l Süsswasser 0,0031 mg/l Salzwasser 0,00031 mg/l Wasser (zeitweilige Freisetzung) 0,031 mg/l Kläranlage 0,35 mg/l Sediment (Süsswasser) 0,0023 mg/kg Sediment (Salzwasser) 0,0029 mg/kg Süsswasser 0,1 mg/l Wasser (zeitweilige Freisetzung) 0,4281 mg/l Sediment (Süsswasser) 0,334 mg/kg Kläranlage 44,6 mg/l Salzwasser 0,01 mg/l Sediment (Süsswasser) 0,0334 mg/kg	Salzwasser 0,0022 mg/l Sediment (Salzwasser) 0,013 mg/kg Boden 0,13 mg/kg Kläranlage 0,4 mg/l Süsswasser 0,0031 mg/l Salzwasser 0,00031 mg/l Wasser (zeit weilige Freiset zung) 0,031 mg/l Kläranlage 0,35 mg/l Sediment (Süsswasser) 0,0023 mg/kg Sediment (Salzwasser) 0,0029 mg/kg Süsswasser 0,1 mg/l Wasser (zeit weilige Freiset zung) 0,4281 mg/kg Sediment (Süsswasser) 0,334 mg/kg Kläranlage 44,6 mg/l Salzwasser 0,01 mg/l Sediment (Salzwasser) 0,0334 mg/kg Boden 0,0334 mg/kg

SDB-Nr.: 153497 V011.0 LOCTITE 574 Seite 7 von 18

Derived No-Effect Level (DNEL):

Name aus Liste	An wendungsge biet	Exposition sweg	Auswirkung auf die Gesundheit	Exposition sdauer	Wert	Bemerkungen
Decan-1-ol 112-30-1	Arbeitnehmer	Inhalation	Langfristige Exposition - systemische Effekte		176 mg/m3	
Decan-1-ol 112-30-1	Arbeitnehmer	Inhalation	Langfristige Exposition - lokale Effekte		129 mg/m3	
Decan-1-ol 112-30-1	Arbeitnehmer	dermal	Langfristige Exposition - systemische Effekte		250 mg/kg	
Decan-1-ol 112-30-1	Arbeitnehmer	dermal	Langfristige Exposition - lokale Effekte		0,19 mg/cm2 190 μg/cm2	
Decan-1-ol 112-30-1	Breite Öffentlichkeit	Inhalation	Langfristige Exposition - systemische Effekte		43,5 mg/m3	
Decan-1-ol 112-30-1	Breite Öffentlichkeit	dermal	Langfristige Exposition - systemische Effekte		125 mg/kg	
Decan-1-ol 112-30-1	Breite Öffentlichkeit	dermal	Langfristige Exposition - lokale Effekte		0,067 mg/cm2 67 μg/cm2	
Decan-1-ol 112-30-1	Breite Öffentlichkeit	oral	Langfristige Exposition - systemische Effekte		12,5 mg/kg	
.alpha.,.alphaDimethylbenzylhydroperoxid 80-15-9	Arbeitnehmer	Inhalation	Langfristige Exposition - systemische Effekte		6 mg/m3	
Maleinsaeure 110-16-7	Arbeitnehmer	dermal	Akute/kurzfristige Exposition - lokale Effekte		0,55 mg/cm2	
Maleinsaeure 110-16-7	Arbeitnehmer	dermal	Langfristige Exposition - lokale Effekte		0,04 mg/cm2	
Maleinsaeure 110-16-7	Arbeitnehmer	dermal	Akute/kurzfristige Exposition - systemische Effekte		58 mg/kg	
Maleinsaeure 110-16-7	Arbeitnehmer	dermal	Langfristige Exposition - systemische Effekte		3,3 mg/kg	
Maleinsaeure 110-16-7	Arbeitnehmer	Inhalation	Akute/kurzfristige Exposition - lokale Effekte		3 mg/m3	
Maleinsaeure 110-16-7	Arbeitnehmer	Inhalation	Langfristige Exposition - systemische Effekte		3 mg/m3	
Maleinsaeure 110-16-7	Arbeitnehmer	Inhalation	Langfristige Exposition - lokale Effekte		3 mg/m3	
Maleinsaeure 110-16-7	Arbeitnehmer	Inhalation	Akute/kurzfristige Exposition - systemische Effekte		3 mg/m3	

SDB-Nr.: 153497 V011.0 LOCTITE 574 Seite 8 von 18

Biologischer Grenzwert (BGW):

keine

8.2. Begrenzung und Überwachung der Exposition:

Hinweise zur Gestaltung technischer Anlagen:

Für gute Be- und Entlüftung sorgen.

Atemschutz:

Für ausreichende Be- und Entlüftung sorgen.

Eine zugelassene Atemschutzmaske bzwAtemschutzgerät mit geeigneter Kartusche für organische Dämpfe sollte getragen werden, wenn das Produkt in einer schlecht belüfteten Umgebung verwendet wird

Filtertyp: A (EN 14387)

Handschutz:

Chemikalienbeständige Schutzhandschuhe (EN 374).

Geeignete Materialen bei kurzfristigem Kontakt bzw. Spritzern (Empfohlen: Mindestens Schutzindex 2, entsprechend > 30

Minuten Permeationszeit nach EN 374):

Nitrilkautschuk (NBR; >= 0,4 mm Schichtdicke)

Geeignete Materialien auch bei längerem, direktem Kontakt (Empfohlen: Schutzindex 6, entsprechend > 480 Minuten Permeationszeit nach EN 374):

Nitrilkautschuk (NBR; >= 0,4 mm Schichtdicke)

Die Angaben basieren auf Literaturangaben und Informationen von Handschuhherstellern oder sind durch Analogieschluß von ähnlichen Stoffen abgeleitet. Es ist zu beachten, dass die Gebrauchsdauer eines Chemikalienschutzhandschuhs in der Praxis auf Grund der vielen Einflußfaktoren (z.B. Temperatur) deutlich kürzer als die nach EN 374 ermittelte Permeationszeit sein kann. Bei Abnutzungserscheinungen ist der Handschuh zu wechseln.

Augenschutz:

Zum Schutz gegen mögliche Spritzer sollte eine Schutzbrille mit Seitenschildern oder eine dichtschließende Chemikalien-Schutzbrille.

Der Augenschutz sollte konform zur EN 166 sein.

Körperschutz:

Bei der Arbeit geeignete Schutzkleidung tragen.

Die Schutzkleidung sollte konform zur EN 14605 für Flüssigkeitsspritzer oder zur EN 13982 für Stäube sein.

Hinweise zu persönlicher Schutzausrüstung:

Die Informationen zur vorgeschlagenen persönlichen Schutzausrüstungen haben nur eine beratende Funktion. Eine vollständige Risikoabschätzung sollte vor der Verwendung des Produktes durchgeführt werden, um einzuschätzen, ob sich die angezeigten persönlichen Schutzausrüstungen für die örtlichen Gegebenheiten eignen. Die persönliche Schutzausrüstung sollte konform zu den maßgeblichen EU-Standards sein.

ABSCHNITT 9: Physikalische und chemische Eigenschaften

9.1. Angaben zu den grundlegenden physikalischen und chemischen Eigenschaften

Aggregatzustand flüssig Lieferform orange

Farbe

Geruch mild

Siedebeginn > 150 °C (> 302 °F)keine

Flammpunkt > 93,3 °C (> 199.94 °F); Flammpunkt nach der Pensky

Marten-Methode mit geschlossenem Tiegel.

pH-Wert Nicht anwendbar, Das Produkt reagiert mit Wasser

Löslichkeit qualitativ Leicht

(Lsm.: Wasser)

Dampfdruck 6,6700000 mbar

(27,0 °C (80.6 °F))

Dampfdruck < 300 mbar;keine Methode

(50 °C (122 °F))

Dichte 1,15 g/cm3 keine

SDB-Nr.: 153497 V011.0 LOCTITE 574 Seite 9 von 18

()

9.2. Sonstige Angaben

Weitere Informationen treffen nicht auf dieses Produkt zu

ABSCHNITT 10: Stabilität und Reaktivität

10.1. Reaktivität

Starke Oxidationsmittel.

Säuren.

Reduktionsmittel.

Starke Basen.

10.2. Chemische Stabilität

Stabil unter angegebenen Lagerungsbedingungen.

10.3. Möglichkeit gefährlicher Reaktionen

Siehe Abschnitt Reaktivität

10.4. Zu vermeidende Bedingungen

Unter normalen Lagerungs- und Anwendungsbedingungen stabil.

10.5. Unverträgliche Materialien

Siehe Abschnitt Reaktivität.

10.6. Gefährliche Zersetzungsprodukte

Kohlenoxide

Kohlenwasserstoffe

Stickoxide

Schnelle Polymerisation kann zu übermäßiger Hitze- und Druckentwicklung führen.

ABSCHNITT 11: Toxikologische Angaben

Angaben zu den Gefahrenklassen im Sinne der Verordnung (EG) Nr. 1272/2008

Akute orale Toxizität:

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe	Werttyp	Wert	Spezies	Methode
CAS-Nr.				
Decan-1-ol	LD50	> 5.000 mg/kg	Ratte	EPA OPPTS 870.1100 (Acute Oral Toxicity)
112-30-1				
α, α-	LD50	382 mg/kg	Ratte	weitere Richtlinien:
Dimethylbenzylhydropero				
xid				
80-15-9				
2'-Phenylacetohydrazid	LD50	270 mg/kg	Ratte	nicht spezifiziert
114-83-0				
Maleinsäure	LD50	708 mg/kg	Ratte	nicht spezifiziert
110-16-7				
1,4-Naphthochinon	LD50	124 mg/kg	Ratte	equivalent or similar to OECD Guideline 401 (Acute Oral
130-15-4				Toxicity)

Akute dermale Toxizität:

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe	Werttyp	Wert	Spezies	Methode
CAS-Nr.				
Decan-1-ol	LD50	> 5.000 mg/kg	Ratte	EPA OPPTS 870.1200 (Acute Dermal Toxicity)
112-30-1				
α, α-	Acute	1.100 mg/kg		Expertenbewertung
Dimethylbenzylhydropero	toxicity			
xid	estimate			
80-15-9	(ATE)			
Maleinsäure	LD50	1.560 mg/kg	Kaninchen	nicht spezifiziert
110-16-7				

Akute inhalative Toxizität:

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe	Werttyp	Wert	Te statmosph re	Expositio	Spezies	Methode
CAS-Nr.				nsdauer		
Decan-1-ol	Acute	5,1 mg/l	Staub/Nebel			Expertenbewertung
112-30-1	toxicity					
	estimate					
	(ATE)					
Decan-1-ol	LC50	4 mg/l		2 h	Maus	
112-30-1						
α, α-	LC50	1,370 mg/l	Dampf	4 h	Ratte	nicht spezifiziert
Dimethylbenzylhydropero						
xid						
80-15-9						
1,4-Naphthochinon	LC50	0,046 mg/l	Staub/Nebel	4 h	Ratte	OECD Guideline 403 (Acute
130-15-4		_				Inhalation Toxicity)

Ätz-/Reizwirkung auf die Haut:

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe CAS-Nr.	Ergebnis	Expositio nsdauer	Spezies	Methode
Decan-1-ol 112-30-1	nicht reizend	4 h	Kaninchen	EPA OPPTS 870.2500 (Acute Dermal Irritation)
α, α- Dimethylbenzylhydropero xid 80-15-9	ätzend		Kaninchen	Draize Test
Maleinsäure 110-16-7	reizend	24 h	Mensch	Patch Test
1,4-Naphthochinon 130-15-4	Category 1C (corrosive)		Kaninchen	OECD Guideline 404 (Acute Dermal Irritation / Corrosion)

Schwere Augenschädigung/-reizung:

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe CAS-Nr.	Ergebnis	Expositio nsdauer	Spezies	Methode
Decan-1-ol 112-30-1	reizend		Kaninchen	EPA OPPTS 870.2400 (Acute Eye Irritation)
Maleinsäure 110-16-7	Gefahr ernster Augenschäden		Kaninchen	OECD Guideline 405 (Acute Eye Irritation / Corrosion)

Sensibilisierung der Atemwege/Haut:

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe	Ergebnis	Testtyp	Spezies	Methode
CAS-Nr.				
Decan-1-ol	nicht	Buehler test	Meerschweinc	EPA OPPTS 870.2600 (Skin
112-30-1	sensibilisierend		hen	Sensitisation)
Maleinsäure	sensibilisierend	locales Maus-Lymphnode	Maus	OECD Guideline 429 (Skin Sensitisation:
110-16-7		Muster		Local Lymph Node Assay)
Maleinsäure	sensibilisierend	locales Maus-Lymphnode	Meerschweinc	OECD Guideline 406 (Skin Sensitisation)
110-16-7		Muster	hen	
1,4-Naphthochinon	sensibilisierend	nicht spezifiziert	Meerschweinc	nicht spezifiziert
130-15-4			hen	

Keimzell-Mutagenität:

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche In haltsstoffe CAS-Nr.	Ergebnis	Studientyp/ Verabreichungsro ute	Metabolische Aktivierung/ Expositionszeit	Spezies	Methode
Decan-1-ol 112-30-1	negativ	bacterial reverse mutation assay (e.g Ames test)	mit und ohne		Henkel Method
α, α- Dimethylbenzylhydropero xid 80-15-9	positiv	bacterial reverse mutation assay (e.g Ames test)	ohne		OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Maleinsäure 110-16-7	negativ	bacterial reverse mutation assay (e.g Ames test)	keine Daten		Ames Test
Maleinsäure 110-16-7	negativ	Säugetierzell- Genmutationsmuste r	mit und ohne		OECD Guideline 476 (In vitro Mammalian Cell Gene Mutation Test)

Karzinogenität

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe CAS-Nr.	Ergebnis	Aufnahmeweg	Expositions dauer/ Häufigkeit der Behandlung	•	Geschlecht	Methode
Maleinsäure 110-16-7	nicht krebserzeugend	oral, im Futter	2 y daily	Ratte	männlich / weiblich	OECD Guideline 451 (Carcinogenicity Studies)

Reproduktionstoxizität:

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe CAS-Nr.	Ergebnis / Wert	Testtyp	Aufnahmew eg	Spezies	Methode
Maleinsäure 110-16-7	NOAEL F1 150 mg/kg	2- Generatione	oral über eine Sonde	Ratte	OECD Guideline 416 (Two- Generation Reproduction
	NOAEL F2 55 mg/kg	n-Studie			Toxicity Study)

S pezifische Zielorgan-Toxizität bei einmaliger Exposition:

Keine Daten vorhanden.

$Spezifische\ Zielorgan-Toxizit \"{a}t\ bei\ wiederholter\ Exposition::$

Das Gemisch ist auf der Grundlage von Grenzwerten, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe	Ergebnis / Wert	Aufnahmew	Expositionsdauer/	Spezies	Methode
CAS-Nr.		eg	Frequenzder		
			An we ndungen		
Decan-1-ol	NOAEL 1.000 mg/kg	dermal	6 hours	Ratte	OECD Guideline 411
112-30-1			5d/w over 13		(Subchronic Dermal
			consecutive weeks		Toxicity: 90-Day Study)
α, α-		Inhalation:	6 h/d	Ratte	nicht spezifiziert
Dimethylbenzylhydropero		Aerosol	5 d/w		
xid					
80-15-9					
Maleinsäure	NOAEL >= 40 mg/kg	oral, im	90 d	Ratte	OECD Guideline 408
110-16-7		Futter	daily		(Repeated Dose 90-Day
			-		Oral Toxicity in Rodents)

Aspirationsgefahr:

Keine Daten vorhanden.

11.2 Angaben über sonstige Gefahren

Keine Daten vorhanden

ABSCHNITT 12: Umweltbezogene Angaben

Allgemeine Angaben zur Ökologie:

Nicht in die Kanalisation / Oberflächenwasser / Grundwasser gelangen lassen.

12.1. Toxizität

Toxizität (Fisch):

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe	Werttyp	Wert	Expositionsdau	Spezies	Methode
CAS-Nr.			er		
Decan-1-ol	LC50	2,2 - 2,5 mg/l	96 h	Pimephales promelas	OECD Guideline 203 (Fish,
112-30-1					Acute Toxicity Test)
Decan-1-ol	NOEC	0,26 mg/l	33 d	Pimephales promelas	OECD 210 (fish early lite
112-30-1					stage toxicity test)
α, α-	LC50	3,9 mg/l	96 h	Oncorhynchus mykiss	OECD Guideline 203 (Fish,
Dimethylbenzylhydroperoxid					Acute Toxicity Test)
80-15-9					
Maleinsäure	LC50	> 245 mg/l	48 h	Leuciscus idus	DIN 38412-15
110-16-7					
1,4-Naphthochinon	LC50	0,045 mg/l	96 h	Oryzias latipes	OECD Guideline 203 (Fish,
130-15-4					Acute Toxicity Test)

Toxizität (Daphnia):

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe CAS-Nr.	Werttyp	Wert	Expositionsdau er	S pe zies	Methode
Decan-1-ol 112-30-1	EC50	2,9 mg/l	48 h		OECD Guideline 202 (Daphnia sp. Acute Immobilisation Test)
α, α- Dimethylbenzylhydroperoxid 80-15-9	EC50	18,84 mg/l	48 h		OECD Guideline 202 (Daphnia sp. Acute Immobilisation Test)
Maleinsäure 110-16-7	EC50	42,81 mg/l	48 h	.1	OECD Guideline 202 (Daphnia sp. Acute Immobilisation Test)
1,4-Naphthochinon 130-15-4	EC50	0,026 mg/l	48 h		OECD Guideline 202 (Daphnia sp. Acute Immobilisation Test)

Chronische Toxizität gegenüber wirbellosen Wassertieren

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe	Werttyp	Wert	Expositionsdau	Spezies	Methode
CAS-Nr.			er		
Decan-1-ol	NOEC	0,11 mg/l	21 d	Daphnia magna	OECD 211 (Daphnia
112-30-1					magna, Reproduction Test)
Maleinsäure	NOEC	10 mg/l	21 d	Daphnia magna	weitere Richtlinien:
110-16-7		-			

Toxizität (Algea):

 $Das\ Gemisch\ ist\ gem\"{a}B\ der\ Kalkulationsmethode,\ basierend\ auf\ den\ im\ Gemisch\ enthaltenen\ eingestuften\ Inhaltsstoffen\ eingestuft.$

Gefährliche Inhaltsstoffe CAS-Nr.	Werttyp	Wert	Expositionsdau er	S pe zies	Methode
Decan-1-ol	EC50	1,5 mg/l	72 h	Desmodesmus subspicatus	QSAR (Quantitative
112-30-1				_	Structure Activity
					Relationship)
Decan-1-ol	EC10	0,7 mg/l	72 h	Desmodesmus subspicatus	QSAR (Quantitative
112-30-1					Structure Activity
					Relationship)
α, α-	EC50	3,1 mg/l	72 h	Desmodesmus subspicatus	OECD Guideline 201 (Alga,
Dimethylbenzylhydroperoxid				(reported as Scenedesmus	Growth Inhibition Test)
80-15-9				subspicatus)	
α, α-	NOEC	l mg/l	72 h	Desmodesmus subspicatus	OECD Guideline 201 (Alga,
Dimethylbenzylhydroperoxid				(reported as Scenedesmus	Growth Inhibition Test)
80-15-9				subspicatus)	
Maleinsäure	EC50	74,35 mg/l	72 h	Pseudokirchneriella subcapitata	OECD Guideline 201 (Alga,
110-16-7					Growth Inhibition Test)
Maleinsäure	EC10	11,8 mg/l	72 h	Pseudokirchneriella subcapitata	` ` `
110-16-7					Growth Inhibition Test)
1,4-Naphthochinon	NOEC	0,07 mg/l	72 h	Pseudokirchneriella subcapitata	OECD Guideline 201 (Alga,
130-15-4					Growth Inhibition Test)
1,4-Naphthochinon	EC50	0,42 mg/l	72 h	Pseudokirchneriella subcapitata	
130-15-4					Growth Inhibition Test)

Toxizität bei Mikroorganismen

Das Gemisch ist gemäß der Kalkulationsmethode, basierend auf den im Gemisch enthaltenen eingestuften Inhaltsstoffen eingestuft.

Gefährliche Inhaltsstoffe	Werttyp	Wert	Expositionsdau	S pe zies	Methode
CAS-Nr.			er		
Decan-1-ol	EC0	10.000 mg/l	30 min	Pseudomonas putida	DIN 38412, part 27
112-30-1					(Bacterial oxygen
					consumption test)
α, α-	EC10	70 mg/l	30 min		nicht spezifiziert
Dimethylbenzylhydroperoxid					
80-15-9					
Maleinsäure	EC10	44,6 mg/l	18 h	Pseudomonas putida	DIN 38412, part 8
110-16-7					(Pseudomonas
					Zellvermehrungshemm-
					Test)
1,4-Naphthochinon	EC50	5,94 mg/l	3 h	activated sludge of a	OECD Guideline 209
130-15-4				predominantly domestic sewage	(Activated Sludge,
				-	Respiration Inhibition Test)

12.2. Persistenz und Abbaubarkeit

Gefährliche Inhaltsstoffe	Ergebnis	Testtyp	Abbaubarkeit	Expositions	Methode
CAS-Nr.				dauer	
Decan-1-ol	leicht biologisch abbaubar	aerob	88 %	30 d	OECD Guideline 301 D (Ready
112-30-1					Biodegradability: Closed Bottle
					Test)
α, α-	Nicht leicht biologisch	aerob	3 %	28 d	OECD Guideline 301 B (Ready
Dimethylbenzylhydroperoxid	abbaubar.				Biodegradability: CO2 Evolution
80-15-9					Test)
Maleinsäure	leicht biologisch abbaubar	aerob	97,08 %	28 d	OECD Guideline 301 B (Ready
110-16-7	_				Biodegradability: CO2 Evolution
					Test)
1,4-Naphthochinon	Nicht leicht biologisch	aerob	0 %	28 d	OECD Guideline 301 F (Ready
130-15-4	abbaubar.				Biodegradability: Manometric
					Respirometry Test)

${\bf 12.3.}\ Bioakkumulation spotenzial$

Gefährliche Inhaltsstoffe	Biokonzentratio	Expositionsda	Temperatur	Spezies	Methode
CAS-Nr.	nsfaktor (BCF)	uer			
Decan-1-ol	20			Berechnet	QSAR (Quantitative Structure
112-30-1					Activity Relationship)
α, α-	9,1			Berechnung	OECD Guideline 305
Dimethylbenzylhydroperoxid				_	(Bioconcentration: Flow-through
80-15-9					Fish Test)

12.4. Mobilität im Boden

Gefährliche Inhaltsstoffe	LogPow	Temperatur	Methode
CAS-Nr.			
Decan-1-ol	4,5	25 °C	OECD Guideline 117 (Partition Coefficient (n-octanol/water), HPLC
112-30-1			Method)
α, α-	1,6	25 °C	OECD Guideline 117 (Partition Coefficient (n-octanol/water), HPLC
Dimethylbenzylhydroperoxid			Method)
80-15-9			
2'-Phenylacetohydrazid	0,74		nicht spezifiziert
114-83-0			
Maleinsäure	-1,3	20 °C	OECD Guideline 107 (Partition Coefficient (n-octanol / water), Shake
110-16-7			Flask Method)
1,4-Naphthochinon	1,71		nicht spezifiziert
130-15-4			

12.5. Ergebnisse der PBT- und vPvB-Beurteilung

Gefährliche Inhaltsstoffe	PBT/vPvB
CAS-Nr.	
Decan-1-ol	Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und
112-30-1	sehr Bioakkumulativ (vPvB).
α, α-Dimethylbenzylhydroperoxid	Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und
80-15-9	sehr Bioakkumulativ (vPvB).
Maleinsäure	Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und
110-16-7	sehr Bioakkumulativ (vPvB).
1,4-Naphthochinon	Erfüllt nicht die Kriterien Persistent, Bioakkumulativ und Toxisch (PBT), sehr Persistent und
130-15-4	sehr Bioakkumulativ (vPvB).

12.6. Endokrinschädliche Eigenschaften

Keine Daten vorhanden

12.7. Andere schädliche Wirkungen

Keine Daten vorhanden.

ABSCHNITT 13: Hinweise zur Entsorgung

13.1. Verfahren der Abfallbehandlung

Entsorgung des Produktes:

Nicht in die Kanalisation / Oberflächenwasser / Grundwasser gelangen lassen.

Gemäß einschlägiger örtlicher und nationaler Vorschriften entsorgen.

Entsorgung ungereinigter Verpackung:

Nach Gebrauch sind Tuben, Gebinde und Flaschen, die noch Restanhaftungen des Produktes enthalten, als Sondermüll zu entsorgen.

Abfallschlüssel

08 04 09* Klebstoff- und Dichtmassenabfälle, die organische Lösemittel oder andere gefährliche Stoffe enthalten Die EAK-Abfallschlüssel sind nicht produkt- sondern herkunftsbezogen. Der Hersteller kann daher für die Produkte, die in unterschiedlichen Branchen Anwendung finden, keinen Abfallschlüssel angeben. Die aufgeführten Schlüssel sind als Empfehlung für den Anwender zu verstehen.

SDB-Nr.: 153497 V011.0 LOCTITE 574 Seite 16 von 18

ABSCHNITT 14: Angaben zum Transport

14.1. UN-Nummer

ADR	Kein Gefahrgut
RID	Kein Gefahrgut
ADN	Kein Gefahrgut
IMDG	Kein Gefahrgut
IATA	Kein Gefahrgut

14.2. Ordnungsgemäße UN-Versandbezeichnung

ADR	Kein Gefahrgut
RID	Kein Gefahrgut
ADN	Kein Gefahrgut
IMDG	Kein Gefahrgut
IATA	Kein Gefahrgut

14.3. Transportgefahrenklassen

ADR	Kein Gefahrgut
RID	Kein Gefahrgut
ADN	Kein Gefahrgut
IMDG	Kein Gefahrgut
IATA	Kein Gefahrgut

14.4. Verpackungsgruppe

ADR	Kein Gefahrgut
RID	Kein Gefahrgut
ADN	Kein Gefahrgut
IMDG	Kein Gefahrgut
IATA	Kein Gefahrgut

14.5. Umweltgefahren

Nicht anwendbar
Nicht anwendbar
Nicht anwendbar
Nicht anwendbar
Nicht anwendbar

14.6. Besondere Vorsichtsmaßnahmen für den Verwender

ADR	Nicht anwendbar
RID	Nicht anwendbar
ADN	Nicht anwendbar
IMDG	Nicht anwendbar
IATA	Nicht anwendbar

14.7. Massengutbeförderung auf dem Seeweg gemäß IMO-Instrumenten

Nicht anwendbar

ABSCHNITT 15: Rechtsvorschriften

15.1. Vorschriften zu Sicherheit, Gesundheits- und Umweltschutz/spezifische Rechtsvorschriften für den Stoff oder das Gemisch

Ozon-schädliche Substanzen (ODS) nach Verordnung (EG) Nr. 1005/2009: Nicht anwendbar Dem PIC-Verfahren unterliegenden Chemikalien nach Verordnung (EU) Nr. Nicht anwendbar 649/2012:

Persistente organische Schadstoffe (POPs) nach Verordnung (EU) 2019/1021: Perfluoroctansäure

CAS 335-67-1

VOC-Gehalt < 3 % (2010/75/EC)

15.2. Stoffsicherheitsbeurteilung

Eine Stoffsicherheitsbeurteilung wurde nicht durchgeführt.

$Nationale\ Vorschriften/Hinweise\ (Deutschland):$

WGK:	WGK 2: deutlich wassergefährdend (Verordnung über Anlagen zum Umgang mit wassergefährdenden Stoffen (AwSV)) Einstufung nach AwSV, Anlage 1 (5.2)
Lagerklasse gemäß TRGS 510:	10

SDB-Nr.: 153497 V011.0 LOCTITE 574 Seite 18 von 18

ABSCHNITT 16: Sonstige Angaben

Die Kennzeichnung des Produktes ist in Kapitel 2 aufgeführt. Vollständiger Wortlaut aller Abkürzungen im vorliegenden Sicherheitsdatenblatt sind wie folgt:

H242 Erwärmung kann Brand verursachen.

H301 Giftig bei Verschlucken.

H302 Gesundheitsschädlich bei Verschlucken.

H312 Gesundheitsschädlich bei Hautkontakt.

H314 Verursacht schwere Verätzungen der Haut und schwere Augenschäden.

H315 Verursacht Hautreizungen.

H317 Kann allergische Hautreaktionen verursachen.

H318 Verursacht schwere Augenschäden.

H319 Verursacht schwere Augenreizung.

H330 Lebensgefahr bei Einatmen.

H335 Kann die Atemwege reizen.

H351 Kann vermutlich Krebs erzeugen.

H373 Kann die Organe schädigen bei längerer oder wiederholter Exposition.

H400 Sehr giftig für Wasserorganismen.

H410 Sehr giftig für Wasserorganismen mit langfristiger Wirkung.

H411 Giftig für Wasserorganismen, mit langfristiger Wirkung.

H412 Schädlich für Wasserorganismen, mit langfristiger Wirkung.

ED: Stoff besitzt Endokrin-aktive Eigenschaften (Endokrin Disruptor-Eigenschaften)

EU OEL: Stoff mit einem EU-Arbeitsplatzgrenzwert

EU EXPLD 1: Stoff ist im Anhang I der Verordnung (EU) 2019/1148 genannt EU EXPLD 2 Stoff ist im Anhang II der Verordnung (EU) 2019/1148 genannt

SVHC: besonders besorgnis-erregende Substanz (SVHC – substance of very high concern) der Reach

Kanditaten-Liste

PBT: Stoff, der die persistenten, bioakkumulativen und toxischen Kriterien erfüllt

PBT/vPvB: Stoff, der die persistenten, bioakkumulativen und toxischen, sowie die sehr persistenten und

sehr bioakkumulativen Kriterien erfüllt

vPvB: Stoff, der die sehr persistenten und sehr bioakkumulativen Kriterien erfüllt

Weitere Informationen:

Dieses Sicherheitsdatenblatt wurde erstellt für den Verkauf von Henkel an Kunden, die bei Henkel einkaufen. Es basiert auf der Verordnung (EG) Nr. 1907/2006 und enthält nur Informationen in Übereinstimmung mit den geltenden Vorschriften der Europäischen Union. In diesem Zusammenhang wird keinerlei Erklärung, Gewährleistung oder Zusicherung hinsichtlich der Einhaltung von Gesetzen oder Vorschriften anderer Gerichtsbarkeiten oder Regionen außerhalb der Europäischen Union abgegeben.

Wenn Sie in ein anderes Gebiet als die Europäische Union exportieren, konsultieren Sie bitte das entsprechende Sicherheitsdatenblatt des betreffenden Landes oder der Region, um eine Einhaltung sicherzustellen, oder kontaktieren Sie die Henkel Abteilung: Product Safety and Regulatory Affairs (ua-productsafety.de@henkel.com) um den Export in andere Länder oder Regionen als die Europäische Union vor eine Ausfuhr abzuklären.

Die Angaben stützen sich auf den heutigen Stand unserer Kenntnisse und beziehen sich auf das Produkt im Anlieferungszustand. Sie sollen unsere Produkte im Hinblick auf Sicherheitserfordernisse beschreiben und haben somit nicht die Bedeutung, bestimmte Eigenschaften zuzusichern.

Sehr geehrter Kunde,

Henkel engagiert sich dafür eine nachhaltige Zukunft zu schaffen, indem wir verschiedene Möglichkeiten entlang der gesamten Wertschöpfungskette fördern. Wenn Sie sich an diesem Vorhaben beteiligen möchten, indem Sie von der Papierzu unserer elektronischen SDB-Übermittlung wechseln, kontaktieren Sie bitte Ihren lokalen Ansprechpartner im Kundendienst. Wir empfehlen dabei als Adressaten eine nicht-personenbezogene E-Mail Adresse wie z.B. SDS@Ihre_Firma.com .

Relevante Änderungen werden in diesem Sicherheitsdatenblatt mit senkrechten Linien am linken Rand gezeigt. Entsprechender Text erscheint in einer anderen Farbe und in geschatteten Feldern.